Scroll:set and function >> Exercice 1.3 >> saq (4258)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 If A and B are two sets and U is the universal set such that n(U) = 1800, n(A) = 350, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

  

 


Answer:_______________




2)  

 If A and B are two sets and U is the universal set such that n(U) = 1093, n(A) = 319, n(B) = 504 and n(A∩B) = 145,

find n(A‘∩B‘).



Answer:_______________




3)  

 If A and B are two sets and U is the universal set such that n(U) = 1050, n(A) = 340, n(B) = 620 and n(A∩B) = 140,

find n(A‘∩B‘).

  

 


Answer:_______________




4)  

 If A and B are two sets and U is the universal set such that n(U) = 1600, n(A) = 300, n(B) = 500 and n(A∩B) = 100,

find n(A‘∩B‘).

  

 


Answer:_______________




5)  

 If A and B are two sets and U is the universal set such that n(U) = 1511, n(A) = 392, n(B) = 513 and n(A∩B) = 110,

find n(A‘∩B‘).



Answer:_______________




6)  

 If A and B are two sets and U is the universal set such that n(U) = 1340, n(A) = 340, n(B) = 570 and n(A∩B) = 190,

find n(A‘∩B‘).

  

 


Answer:_______________




7)  

 If A and B are two sets and U is the universal set such that n(U) = 1800, n(A) = 350, n(B) = 600 and n(A∩B) = 100,

find n(A‘∩B‘).

  

 


Answer:_______________




8)  

 If A and B are two sets and U is the universal set such that n(U) = 1006, n(A) = 373, n(B) = 553 and n(A∩B) = 119,

find n(A‘∩B‘).



Answer:_______________




9)  

 If A and B are two sets and U is the universal set such that n(U) = 1070, n(A) = 330, n(B) = 590 and n(A∩B) = 160,

find n(A‘∩B‘).

  

 


Answer:_______________




10)  

 If A and B are two sets and U is the universal set such that n(U) = 1500, n(A) = 300, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

  

 


Answer:_______________




 

1)  

 If A and B are two sets and U is the universal set such that n(U) = 1800, n(A) = 350, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

Answer: 1000

  

 


SOLUTION 1 :

 Given :

n(U) = 1800

n(A) = 350

n(B) = 600

   n(A∩B) = 150,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 350 + 600 - 150

         = 950 - 150 = 800

∴ n(A∪B) = 800

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1800 - 800 = 1000

   n(A‘∩B‘)  = 1000



2)  

 If A and B are two sets and U is the universal set such that n(U) = 1093, n(A) = 319, n(B) = 504 and n(A∩B) = 145,

find n(A‘∩B‘).

Answer: 415


SOLUTION 1 :

 Given :

n(U) = 1093

n(A) = 319

n(B) = 504

   n(A∩B) = 145,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 319 + 504 - 145

         = 823 - 145 = 678

∴ n(A∪B) = 678

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1093 - 678 = 415

   n(A‘∩B‘)  = 415



3)  

 If A and B are two sets and U is the universal set such that n(U) = 1050, n(A) = 340, n(B) = 620 and n(A∩B) = 140,

find n(A‘∩B‘).

Answer: 230

  

 


SOLUTION 1 :

 Given :

n(U) = 1050

n(A) = 340

n(B) = 620

   n(A∩B) = 140,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 340 + 620 - 140

         = 960 - 140 = 820

∴ n(A∪B) = 820

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1050 - 820 = 230

   n(A‘∩B‘)  = 230



4)  

 If A and B are two sets and U is the universal set such that n(U) = 1600, n(A) = 300, n(B) = 500 and n(A∩B) = 100,

find n(A‘∩B‘).

Answer: 900

  

 


SOLUTION 1 :

 Given :

n(U) = 1600

n(A) = 300

n(B) = 500

   n(A∩B) = 100,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 300 + 500 - 100

         = 800 - 100 = 700

∴ n(A∪B) = 700

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1600 - 700 = 900

   n(A‘∩B‘)  = 900



5)  

 If A and B are two sets and U is the universal set such that n(U) = 1511, n(A) = 392, n(B) = 513 and n(A∩B) = 110,

find n(A‘∩B‘).

Answer: 716


SOLUTION 1 :

 Given :

n(U) = 1511

n(A) = 392

n(B) = 513

   n(A∩B) = 110,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 392 + 513 - 110

         = 905 - 110 = 795

∴ n(A∪B) = 795

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1511 - 795 = 716

   n(A‘∩B‘)  = 716



6)  

 If A and B are two sets and U is the universal set such that n(U) = 1340, n(A) = 340, n(B) = 570 and n(A∩B) = 190,

find n(A‘∩B‘).

Answer: 620

  

 


SOLUTION 1 :

 Given :

n(U) = 1340

n(A) = 340

n(B) = 570

   n(A∩B) = 190,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 340 + 570 - 190

         = 910 - 190 = 720

∴ n(A∪B) = 720

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1340 - 720 = 620

   n(A‘∩B‘)  = 620



7)  

 If A and B are two sets and U is the universal set such that n(U) = 1800, n(A) = 350, n(B) = 600 and n(A∩B) = 100,

find n(A‘∩B‘).

Answer: 950

  

 


SOLUTION 1 :

 Given :

n(U) = 1800

n(A) = 350

n(B) = 600

   n(A∩B) = 100,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 350 + 600 - 100

         = 950 - 100 = 850

∴ n(A∪B) = 850

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1800 - 850 = 950

   n(A‘∩B‘)  = 950



8)  

 If A and B are two sets and U is the universal set such that n(U) = 1006, n(A) = 373, n(B) = 553 and n(A∩B) = 119,

find n(A‘∩B‘).

Answer: 199


SOLUTION 1 :

 Given :

n(U) = 1006

n(A) = 373

n(B) = 553

   n(A∩B) = 119,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 373 + 553 - 119

         = 926 - 119 = 807

∴ n(A∪B) = 807

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1006 - 807 = 199

   n(A‘∩B‘)  = 199



9)  

 If A and B are two sets and U is the universal set such that n(U) = 1070, n(A) = 330, n(B) = 590 and n(A∩B) = 160,

find n(A‘∩B‘).

Answer: 310

  

 


SOLUTION 1 :

 Given :

n(U) = 1070

n(A) = 330

n(B) = 590

   n(A∩B) = 160,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 330 + 590 - 160

         = 920 - 160 = 760

∴ n(A∪B) = 760

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1070 - 760 = 310

   n(A‘∩B‘)  = 310



10)  

 If A and B are two sets and U is the universal set such that n(U) = 1500, n(A) = 300, n(B) = 600 and n(A∩B) = 150,

find n(A‘∩B‘).

Answer: 750

  

 


SOLUTION 1 :

 Given :

n(U) = 1500

n(A) = 300

n(B) = 600

   n(A∩B) = 150,

To find : n(A‘∩B‘).

we know that A‘∩B‘ = (A∪B)‘

Now, n(A∪B) = n(A) + n(B) - n(A∩B)

          = 300 + 600 - 150

         = 900 - 150 = 750

∴ n(A∪B) = 750

 n(A‘B‘) = n[(A∪B)‘]

 n(A‘∩B‘) = n[(A∪B)‘] = n(U) - n(A∪B)

    = 1500 - 750 = 750

   n(A‘∩B‘)  = 750