Scroll:set and function >> Exercice 1.3 >> saq (4261)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

 n(A∪B∪C) =


Answer:_______________




2)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {q,z,p,l,q}, B = {h,k,a} and C = {q,q,h}

 n(A∪B∪C) =



Answer:_______________




3)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

 n(A∪B∪C) =


Answer:_______________




4)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {m,q,k,g,u}, B = {x,z,b} and C = {m,u,x}

 n(A∪B∪C) =



Answer:_______________




5)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

 n(A∪B∪C) =


Answer:_______________




6)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {l,m,o,e,u}, B = {l,j,x} and C = {l,u,l}

 n(A∪B∪C) =



Answer:_______________




7)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {2,3,4}, B = {3,4,5,6} and C = {4,5,6,7}

 n(A∪B∪C) =


Answer:_______________




8)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {g,e,p,m,i}, B = {u,l,x} and C = {g,i,u}

 n(A∪B∪C) =



Answer:_______________




9)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

 n(A∪B∪C) =


Answer:_______________




10)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {k,e,y,a,h}, B = {u,e,i} and C = {k,h,u}

 n(A∪B∪C) =



Answer:_______________




 

1)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {1,2,3}, B = {2,3,4,5} and C = {3,4,5,6}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {1,2,3} ∩ {2,3,4,5}

           = {2,3}

⇒       n(A∩B) = 2

 (B∩C) = {2,3,4,5} ∩  {3,4,5,6}

           =  {3,4,5}

⇒     n(B∩C)  = 3

 (AC)  = {1,2,3} ∩ {3,4,5,6}

            = {3}

⇒       n(A∩C) = 1

(A∪B∪C) = [{1,2,3} ∪ {2,3,4,5}∪ {3,4,5,6}]

               = {1,2,3,4,5}∪{3,4,5,6}

        = {1,2,3,4,5,6}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{1,2,3} ∩ {2,3,4,5} ∩ {3,4,5,6}]

                  = {2,3} ∩ {3,4,5,6}

                  = {3}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



2)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {v,o,l,x,f}, B = {h,g,o} and C = {v,f,h}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {v,o,l,x,f}, B = {h,g,o} and C = {v,f,h}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {v,o,l,x,f} ∩ {h,g,o}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {h,g,o} ∩ {v,f,h}

           =  {h}

⇒     n(B∩C)  = 1

 (AC)  = {v,o,l,x,f} ∩ {v,f,h}

            = {v,f}

⇒       n(A∩C) = 2

(A∪B∪C) = [{v,o,l,x,f} ∪ {h,g,o}∪{v,f,h}

               = {v,o,l,x,f,h,g,o}∪{v,f,h}

        = {v,o,l,x,f,h,g,o}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{v,o,l,x,f} ∩ {h,g,o} ∩ {v,f,h}]

                  = { } ∩ {l,x,f,h}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



3)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {3,4,5}, B = {4,5,6,7} and C = {5,6,7,8}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {3,4,5} ∩ {4,5,6,7}

           = {4,5}

⇒       n(A∩B) = 2

 (B∩C) = {4,5,6,7} ∩  {5,6,7,8}

           =  {5,6,7}

⇒     n(B∩C)  = 3

 (AC)  = {3,4,5} ∩ {5,6,7,8}

            = {5}

⇒       n(A∩C) = 1

(A∪B∪C) = [{3,4,5} ∪ {4,5,6,7}∪ {5,6,7,8}]

               = {3,4,5,6,7}∪{5,6,7,8}

        = {3,4,5,6,7,8}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{3,4,5} ∩ {4,5,6,7} ∩ {5,6,7,8}]

                  = {4,5} ∩ {5,6,7,8}

                  = {5}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



4)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {v,f,u,x,g}, B = {t,d,s} and C = {v,g,t}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {v,f,u,x,g}, B = {t,d,s} and C = {v,g,t}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {v,f,u,x,g} ∩ {t,d,s}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {t,d,s} ∩ {v,g,t}

           =  {t}

⇒     n(B∩C)  = 1

 (AC)  = {v,f,u,x,g} ∩ {v,g,t}

            = {v,g}

⇒       n(A∩C) = 2

(A∪B∪C) = [{v,f,u,x,g} ∪ {t,d,s}∪{v,g,t}

               = {v,f,u,x,g,t,d,s}∪{v,g,t}

        = {v,f,u,x,g,t,d,s}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{v,f,u,x,g} ∩ {t,d,s} ∩ {v,g,t}]

                  = { } ∩ {u,x,g,t}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



5)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {4,5,6}, B = {5,6,7,8} and C = {6,7,8,9}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {4,5,6} ∩ {5,6,7,8}

           = {5,6}

⇒       n(A∩B) = 2

 (B∩C) = {5,6,7,8} ∩  {6,7,8,9}

           =  {6,7,8}

⇒     n(B∩C)  = 3

 (AC)  = {4,5,6} ∩ {6,7,8,9}

            = {6}

⇒       n(A∩C) = 1

(A∪B∪C) = [{4,5,6} ∪ {5,6,7,8}∪ {6,7,8,9}]

               = {4,5,6,7,8}∪{6,7,8,9}

        = {4,5,6,7,8,9}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{4,5,6} ∩ {5,6,7,8} ∩ {6,7,8,9}]

                  = {5,6} ∩ {6,7,8,9}

                  = {6}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



6)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {h,a,f,s,e}, B = {k,l,a} and C = {h,e,k}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {h,a,f,s,e}, B = {k,l,a} and C = {h,e,k}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {h,a,f,s,e} ∩ {k,l,a}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {k,l,a} ∩ {h,e,k}

           =  {k}

⇒     n(B∩C)  = 1

 (AC)  = {h,a,f,s,e} ∩ {h,e,k}

            = {h,e}

⇒       n(A∩C) = 2

(A∪B∪C) = [{h,a,f,s,e} ∪ {k,l,a}∪{h,e,k}

               = {h,a,f,s,e,k,l,a}∪{h,e,k}

        = {h,a,f,s,e,k,l,a}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{h,a,f,s,e} ∩ {k,l,a} ∩ {h,e,k}]

                  = { } ∩ {f,s,e,k}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



7)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {2,3,4}, B = {3,4,5,6} and C = {4,5,6,7}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {2,3,4}, B = {3,4,5,6} and C = {4,5,6,7}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {2,3,4} ∩ {3,4,5,6}

           = {3,4}

⇒       n(A∩B) = 2

 (B∩C) = {3,4,5,6} ∩  {4,5,6,7}

           =  {4,5,6}

⇒     n(B∩C)  = 3

 (AC)  = {2,3,4} ∩ {4,5,6,7}

            = {4}

⇒       n(A∩C) = 1

(A∪B∪C) = [{2,3,4} ∪ {3,4,5,6}∪ {4,5,6,7}]

               = {2,3,4,5,6}∪{4,5,6,7}

        = {2,3,4,5,6,7}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{2,3,4} ∩ {3,4,5,6} ∩ {4,5,6,7}]

                  = {3,4} ∩ {4,5,6,7}

                  = {4}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



8)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {e,g,j,v,w}, B = {l,r,s} and C = {e,w,l}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {e,g,j,v,w}, B = {l,r,s} and C = {e,w,l}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {e,g,j,v,w} ∩ {l,r,s}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {l,r,s} ∩ {e,w,l}

           =  {l}

⇒     n(B∩C)  = 1

 (AC)  = {e,g,j,v,w} ∩ {e,w,l}

            = {e,w}

⇒       n(A∩C) = 2

(A∪B∪C) = [{e,g,j,v,w} ∪ {l,r,s}∪{e,w,l}

               = {e,g,j,v,w,l,r,s}∪{e,w,l}

        = {e,g,j,v,w,l,r,s}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{e,g,j,v,w} ∩ {l,r,s} ∩ {e,w,l}]

                  = { } ∩ {j,v,w,l}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets. 

 



9)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

 n(A∪B∪C) = Answer: 6


SOLUTION 1 :

 Given : 

A = {5,6,7}, B = {6,7,8,9} and C = {7,8,9,10}

⇒          n(A) = 3, n(B) = 4, n(C) = 4

(A∩B) =  {5,6,7} ∩ {6,7,8,9}

           = {6,7}

⇒       n(A∩B) = 2

 (B∩C) = {6,7,8,9} ∩  {7,8,9,10}

           =  {7,8,9}

⇒     n(B∩C)  = 3

 (AC)  = {5,6,7} ∩ {7,8,9,10}

            = {7}

⇒       n(A∩C) = 1

(A∪B∪C) = [{5,6,7} ∪ {6,7,8,9}∪ {7,8,9,10}]

               = {5,6,7,8,9}∪{7,8,9,10}

        = {5,6,7,8,9,10}

⇒     n(A∪B∪C) = 6      ...............  (1)

(A∩B∩C) = [{5,6,7} ∩ {6,7,8,9} ∩ {7,8,9,10}]

                  = {6,7} ∩ {7,8,9,10}

                  = {7}

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 3 + 4 + 4 - 2 - 3 - 1 + 1

                       = 12 - 6 = 6      ...............  (2)

From (1) and (2), It is true for given sets. 

 



10)  

 verify n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)  for the sets given below :

(i) A = {h,o,m,z,d}, B = {i,w,s} and C = {h,d,i}

 n(A∪B∪C) = Answer: 8


SOLUTION 1 :

  Given : 

A = {h,o,m,z,d}, B = {i,w,s} and C = {h,d,i}

⇒          n(A) = 5, n(B) = 3, n(C) = 3

(A∩B) =  {h,o,m,z,d} ∩ {i,w,s}

           = { }

⇒       n(A∩B) = 0

 (B∩C) = {i,w,s} ∩ {h,d,i}

           =  {i}

⇒     n(B∩C)  = 1

 (AC)  = {h,o,m,z,d} ∩ {h,d,i}

            = {h,d}

⇒       n(A∩C) = 2

(A∪B∪C) = [{h,o,m,z,d} ∪ {i,w,s}∪{h,d,i}

               = {h,o,m,z,d,i,w,s}∪{h,d,i}

        = {h,o,m,z,d,i,w,s}

⇒     n(A∪B∪C) = 8     ...............  (1)

(A∩B∩C) = [{h,o,m,z,d} ∩ {i,w,s} ∩ {h,d,i}]

                  = { } ∩ {m,z,d,i}

                  = { }

⇒ n(A∩B∩C) = 1

∴  n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C)

                         + n(A∩B∩C)

                        = 5 + 3 + 3 - 0 - 1 - 2 + 0

                       = 11 - 3 = 8      ...............  (2)

From (1) and (2), It is true for given sets.