Scroll:Probability >> probability >> ps (4492)


Written Instructions:

For each Multiple Choice Question (MCQ), four options are given. One of them is the correct answer. Make your choice (1,2,3 or 4). Write your answers in the brackets provided..

For each Short Answer Question(SAQ) and Long Answer Question(LAQ), write your answers in the blanks provided.

Leave your answers in the simplest form or correct to two decimal places.



 

1)  

 A jar contains 108 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 16 and the probability of drawing a green marble is 712. How many white marbles does the jar contain


Answer:_______________




2)  

 A jar contains 140 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 110 and the probability of drawing a green marble is 520. How many white marbles does the jar contain


Answer:_______________




3)  

 A jar contains 156 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 26 and the probability of drawing a green marble is 512. How many white marbles does the jar contain


Answer:_______________




4)  

 A jar contains 176 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 24 and the probability of drawing a green marble is 78. How many white marbles does the jar contain


Answer:_______________




5)  

 A jar contains 176 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 28 and the probability of drawing a green marble is 716. How many white marbles does the jar contain


Answer:_______________




6)  

 A jar contains 136 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 14 and the probability of drawing a green marble is 58. How many white marbles does the jar contain


Answer:_______________




7)  

 A jar contains 180 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 210 and the probability of drawing a green marble is 520. How many white marbles does the jar contain


Answer:_______________




8)  

 A jar contains 120 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 215 and the probability of drawing a green marble is 730. How many white marbles does the jar contain


Answer:_______________




9)  

 A jar contains 100 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 110 and the probability of drawing a green marble is 520. How many white marbles does the jar contain


Answer:_______________




10)  

 A jar contains 156 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 16 and the probability of drawing a green marble is 712. How many white marbles does the jar contain


Answer:_______________




 

1)  

 A jar contains 108 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 16 and the probability of drawing a green marble is 712. How many white marbles does the jar contain

Answer: 27


SOLUTION 1 :

A jar contains 108 marbles each of which is blue, green and white. 

n(S) = 108.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 16 .

Probability of drawing green marbles, P(G) = 712.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x108

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    16 + 712 + x108 = 1

                                   18 + 63 + x ÷ 108 = 1  LCM = 108

                                    81 + x = 108

                                    x = 108 - 81

                                   x = 27.

Number of white balls = 27



2)  

 A jar contains 140 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 110 and the probability of drawing a green marble is 520. How many white marbles does the jar contain

Answer: 91


SOLUTION 1 :

A jar contains 140 marbles each of which is blue, green and white. 

n(S) = 140.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 110 .

Probability of drawing green marbles, P(G) = 520.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x140

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    110 + 520 + x140 = 1

                                   14 + 35 + x ÷ 140 = 1  LCM = 140

                                    49 + x = 140

                                    x = 140 - 49

                                   x = 91.

Number of white balls = 91



3)  

 A jar contains 156 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 26 and the probability of drawing a green marble is 512. How many white marbles does the jar contain

Answer: 39


SOLUTION 1 :

A jar contains 156 marbles each of which is blue, green and white. 

n(S) = 156.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 26 .

Probability of drawing green marbles, P(G) = 512.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x156

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    26 + 512 + x156 = 1

                                   52 + 65 + x ÷ 156 = 1  LCM = 156

                                    117 + x = 156

                                    x = 156 - 117

                                   x = 39.

Number of white balls = 39



4)  

 A jar contains 176 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 24 and the probability of drawing a green marble is 78. How many white marbles does the jar contain

Answer: -66


SOLUTION 1 :

A jar contains 176 marbles each of which is blue, green and white. 

n(S) = 176.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 24 .

Probability of drawing green marbles, P(G) = 78.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x176

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    24 + 78 + x176 = 1

                                   88 + 154 + x ÷ 176 = 1  LCM = 176

                                    242 + x = 176

                                    x = 176 - 242

                                   x = -66.

Number of white balls = -66



5)  

 A jar contains 176 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 28 and the probability of drawing a green marble is 716. How many white marbles does the jar contain

Answer: 55


SOLUTION 1 :

A jar contains 176 marbles each of which is blue, green and white. 

n(S) = 176.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 28 .

Probability of drawing green marbles, P(G) = 716.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x176

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    28 + 716 + x176 = 1

                                   44 + 77 + x ÷ 176 = 1  LCM = 176

                                    121 + x = 176

                                    x = 176 - 121

                                   x = 55.

Number of white balls = 55



6)  

 A jar contains 136 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 14 and the probability of drawing a green marble is 58. How many white marbles does the jar contain

Answer: 17


SOLUTION 1 :

A jar contains 136 marbles each of which is blue, green and white. 

n(S) = 136.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 14 .

Probability of drawing green marbles, P(G) = 58.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x136

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    14 + 58 + x136 = 1

                                   34 + 85 + x ÷ 136 = 1  LCM = 136

                                    119 + x = 136

                                    x = 136 - 119

                                   x = 17.

Number of white balls = 17



7)  

 A jar contains 180 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 210 and the probability of drawing a green marble is 520. How many white marbles does the jar contain

Answer: 99


SOLUTION 1 :

A jar contains 180 marbles each of which is blue, green and white. 

n(S) = 180.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 210 .

Probability of drawing green marbles, P(G) = 520.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x180

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    210 + 520 + x180 = 1

                                   36 + 45 + x ÷ 180 = 1  LCM = 180

                                    81 + x = 180

                                    x = 180 - 81

                                   x = 99.

Number of white balls = 99



8)  

 A jar contains 120 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 215 and the probability of drawing a green marble is 730. How many white marbles does the jar contain

Answer: 76


SOLUTION 1 :

A jar contains 120 marbles each of which is blue, green and white. 

n(S) = 120.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 215 .

Probability of drawing green marbles, P(G) = 730.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x120

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    215 + 730 + x120 = 1

                                   16 + 28 + x ÷ 120 = 1  LCM = 120

                                    44 + x = 120

                                    x = 120 - 44

                                   x = 76.

Number of white balls = 76



9)  

 A jar contains 100 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 110 and the probability of drawing a green marble is 520. How many white marbles does the jar contain

Answer: 65


SOLUTION 1 :

A jar contains 100 marbles each of which is blue, green and white. 

n(S) = 100.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 110 .

Probability of drawing green marbles, P(G) = 520.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x100

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    110 + 520 + x100 = 1

                                   10 + 25 + x ÷ 100 = 1  LCM = 100

                                    35 + x = 100

                                    x = 100 - 35

                                   x = 65.

Number of white balls = 65



10)  

 A jar contains 156 marbles each of the colours blue, green and white. The probility of drawing a blue marbles is 16 and the probability of drawing a green marble is 712. How many white marbles does the jar contain

Answer: 39


SOLUTION 1 :

A jar contains 156 marbles each of which is blue, green and white. 

n(S) = 156.

w.k.t P(S) = 1.

Given: 

Probability of drawing blue marble, P(B) = 16 .

Probability of drawing green marbles, P(G) = 712.

Let  X  be the number of white marbles, n(W) = x.

⇒                                  P(G) = n(G) / n(S) = x156

⇒                                                   P(S) = 1.

                                     p(B) + P(G) + P(W) = 1

                                    16 + 712 + x156 = 1

                                   26 + 91 + x ÷ 156 = 1  LCM = 156

                                    117 + x = 156

                                    x = 156 - 117

                                   x = 39.

Number of white balls = 39